Compact Simple Lie Groups and Their C-, S-, and E-Transforms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Simple Lie Groups and Their C-, S-, and E-Transforms

New continuous group transforms, together with their discretization over a lattice of any density and admissible symmetry, are defined for a general compact simple Lie groups of rank 2 ≤ n < ∞. Rank 1 transforms are known. Rank 2 exposition of Cand S-transforms is in the literature. The E-transforms appear here for the first time.

متن کامل

Equivariant Gerbes over Compact Simple Lie Groups

Using groupoid S-central extensions, we present, for a compact simple Lie group G, an infinite dimensional model of S-gerbe over the differential stack G/G whose Dixmier-Douady class corresponds to the canonical generator of the equivariant cohomology H G(G). c © 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Gerbes Equivariantes sur les groupes de Lie simples compa...

متن کامل

Orthogonal Polynomials of Compact Simple Lie Groups

Recursive algebraic construction of two infinite families of polynomials in n variables is proposed as a uniform method applicable to every semisimple Lie group of rank n. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of type A1. The obtained not Laurent-type polynomials are equivalent to the partial cases of theMacdonald symmet...

متن کامل

Berry ’ s phase for compact Lie groups

The Lie group adiabatic evolution determined by a Lie algebra parameter dependent Hamiltonian is considered. It is demonstrated that in the case when the parameter space of the Hamiltonian is a homogeneous Kähler manifold its fundamental Kähler potentials completely determine Berry geometrical phase factor. Explicit expressions for Berry vector potentials (Berry connections) and Berry curvature...

متن کامل

Final Draft ON RADON TRANSFORMS ON COMPACT LIE GROUPS

We show that the Radon transform related to closed geodesics is injective on a Lie group if and only if the connected components are not homeomorphic to S nor to S. This is true for both smooth functions and distributions. The key ingredients of the proof are finding totally geodesic tori and realizing the Radon transform as a family of symmetric operators indexed by nontrivial homomorphisms fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2005

ISSN: 1815-0659

DOI: 10.3842/sigma.2005.025